Rapid Temperature Swing Adsorption using Polymer/Supported Amine Composite Hollow Fibers

Christopher W. Jones, Yoshiaki Kawajiri, William J. Koros, Matthew Realff, David Sholl Georgia Institute of Technology

> Katherine Searcy Trimeric Inc.

Ryan Lively Algenol Biofuels

Post-Combustion Sorbent-Based Capture 2012 NETL CO₂ Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA Tuesday, July 10, 2012

Budget:

DOE contribution:

Year 1: \$ 691,955 Year 2: \$ 847,672 Year 3: \$ 847,006 Total: \$2,386,633 (79%)

Cost Share Partners:

GeorgiaInstitute of **Tech**nology

School of Chemical & Biomolecular Engineering

GE Energy:	\$ 420,000
Algenol Biofuels:	\$ 183,900
Southern Company:	\$ 33,147
Total:	\$ 637,047 (21%)

Total Budget: \$3,023,680

Project Performance Dates – October 2011 to September 2014

Combine: state-of-the-art supported amine (i) adsorbents, with (ii) a new contactor tuned to address specific weaknesses of amine materials, to yield a novel process strategy

Supported Amine Adsorbent

Pros:

- 1) Can achieve high capacity in lab studies
- 2) Appear to achieve acceptable kinetics
- 3) Simple, scalable synthesis
- 4) High heat of adsorption (heat integration!)

Cons:

- 1) High heat of adsorption
 - 2) Deactivation with O₂, steam, NOx, SOx
 - 3) Low working capacity or degradation in practical contactors (fluidized bed)

(i) can deactivate with direct steam contact
 (ii) can deactivate at high T in concentrated
 CO₂

Class 1 Class 2 CO₂ No effective contactor demonstrated that addresses

multiple "cons."

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

Hollow Fiber Contactor:

Fiber Bed: Achieves high surface area without excessive pressure drop

Hollow Fiber: Allows rapid heat transfer without contact of steam with amine

1) Spinning of high solid content (50-66 volume%), flexible hollow fibers, using low cos commercial polymers (e.g. cellulose acetate)

2) Building and demonstrating an RTSA system for CO_2 capture from simulated flue gas (13X as sorbent).

Lively, et al., *Ind. Eng. Chem. Res.* **2009**, 48, 7314.

Lively et al, International Journal of Greenhouse Gas Control, Accepted (In Press July 13th)

3) Constructing a barrier lumen layer in the fiber bore, allowing the fibers to act as a shell-in-tube heat exchanger.

Lively et al. ACS Appl. Mater. Interfaces **2011**, 3, 3568.

Parallel Flow Hollow Fiber Contactors:

- Rapid adsorption cycles possible with zeolite 13X.
- Not yet experimentally demonstrated with amine sorbents

Pressure drop through fiber modules is very low compared to fixed beds

JOGIY

Georgialnstitute **ech**mol

RTSA Representation on Isotherm

RTSA Qualitative Cycle

Key Points from Zeolite 13X Studies:

- Fiber sorbents show rapid (<10 second) CO₂ uptakes
- Fibers can be repeatedly thermally cycled with <u>no loss in capacity</u> or physical damage
- External boundary layers can be removed via close fiber packing (ε~0.3)
- Low pressure drops (< 1.5 psig) at high superficial velocities (~ 1 m/s)

Using carefully timed

heating and sweep

cycles, a pure CO₂

product can be made

🗄 School of Chemical & Biomolecular Engineering

Georgia Institute of Technology

100.0

CO₂ Conc. (mol%)

0.0

Cost Summary (Analysis performed by Trimeric Corp.)

Assumed installed fiber costs were \$30/m² life of 3 years.

Total O&M Costs	MM\$/vear	57.87
	Ţ, J C C.	
Averaged annual		
cost of fiber replacement	MM\$/year	24.07

			RTSA	
Cost of CO2 Capture				
Total Annual Cost of CO2 Capture	MM\$/year		176.6	
CO2 captured	ton/year		4,342,000	
	tonr	ne/year	3,939,000	
Cost of CO2 Capture	\$/ton		40.7	
	\$/tonne		44.8	
Impact of CO2 Capture on P				
Efficiency				
Change in Net Plant Efficiency		%	-7.3	

RTSA System Cost Estimate Total Purchased Cost \$130.9MM

Escalation Factor = 1.249

DOE Technoeconomic Metrics – Sensitivity

• Sensitivity to fiber cost and fiber life

		Base Case	70% Fiber Costs	130% Fiber Costs	50% Fiber Life	200% Fiber Life
Cost of CO ₂ Capture						
Annual Capital Charge	MM\$/yr	118.8	97.1	140.4	118.8	118.8
Annual O&M Costs	MM\$/yr	57.8	50.2	65.5	81.9	45.8
Total Annual Cost of CO ₂ Capture	MM\$/year	176.6	147.4	205.7	200.6	164.6
Cost of CO ₂ Capture	\$/ton	40.7	33.9	47.4	46.2	37.9
	\$/tonne	44.8	37.4	52.2	50.9	41.8
Change in Cost of CO ₂ Capture	%		-17	17	14	-7

Georgia Institute of Technology

School of Chemical & Biomolecular Engineering

Summary & Future Work

- Rapid Temperature Swing Adsorption enabled by a new contactor combined with solid amine sorbents.
- Cycle allows effective recovery of heat of sorption and sensible heat of module through integration of modules in different phases of operation.
- Preliminary Technoeconomic analysis indicates promise: \$37 to \$50/tonne
 - Relatively low parasitic load (1.25 escalation factor)
 - Capital cost sensitive to fiber life and base fiber costs
- Synthesize amines, spin fibers, and construct benchscale modules (0.5"x3' 150 fibers)
- Model single fiber through the cyclic behavior and validate against benchscale
- Optimize sorbent, fiber and module parameters to maximize heat recovery
- Refine Technoeconomic model with experimental parameters

School of Chemical & Biomolecular Engineering

Georgia Institute

Funding

DOE Award #: DE-FE0007804 Algenol Biofuels GE Southern Company

<u>People</u>

Dr. Ron Chance – Algenol Biofuels
Dr. Ying Dai – hollow fiber spinning
Dr. Yanfang Fan – experimental system design and testing
Dr. Fateme Rezaei – sorbent synthesis and fiber modeling
Ms. Jayashree Kalyanaraman – fiber modeling
Ms. Grace Chen – sorbent synthesis & characterization / fuel gas upgrading

Program officer Barbara Carney – NETL, DOE

